(3x^2-16x+21)/(x-3)=x

Simple and best practice solution for (3x^2-16x+21)/(x-3)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-16x+21)/(x-3)=x equation:



(3x^2-16x+21)/(x-3)=x
We move all terms to the left:
(3x^2-16x+21)/(x-3)-(x)=0
Domain of the equation: (x-3)!=0
We move all terms containing x to the left, all other terms to the right
x!=3
x∈R
We add all the numbers together, and all the variables
-1x+(3x^2-16x+21)/(x-3)=0
We multiply all the terms by the denominator
-1x*(x-3)+(3x^2-16x+21)=0
We multiply parentheses
-x^2+3x+(3x^2-16x+21)=0
We get rid of parentheses
-x^2+3x^2+3x-16x+21=0
We add all the numbers together, and all the variables
2x^2-13x+21=0
a = 2; b = -13; c = +21;
Δ = b2-4ac
Δ = -132-4·2·21
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-1}{2*2}=\frac{12}{4} =3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+1}{2*2}=\frac{14}{4} =3+1/2 $

See similar equations:

| f/5+17=11 | | 23s−13=s6+53 | | 10x+7-5x+2=9x-11 | | -5(z-99)=45 | | 1/3x-8=4-x | | (7x+13)+(13x7)=180 | | 0.08x+.011(3x+47,000)=28,130 | | 2/1000=x/3500 | | 3-6a=a-6a | | 36=6(w+8)-8w | | 8(c+3)=88 | | 8(3x-18)=480 | | .70-x=18 | | 11/24=x+19/6-11/3 | | 4*y+7=48 | | x+.40=126 | | 3=z4 | | t=55+9*3 | | 22x^2-37x+6=0 | | x+.60=126 | | 4x15=3 | | 22x^2+37x+6=0 | | 21-(-6n)=75 | | 7x+104=11x | | 20=2r+3r | | 22=-2(y-61) | | -.60x=126 | | 5(3+x)=x(x-3)-4x | | 14=2/5u | | .60x=54 | | F(0)=4x-5 | | 13x=4x-99 |

Equations solver categories